Computational Determination of the Energetics of Boron Ignition/Combustion Reactions

Peter Politzer,* Pat Lane, and Monica C. Concha
Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148

Received: October 29, 1998; In Final Form: January 12, 1999

Abstract

Two computational procedures, the density functional B3PW91/6-311+G(2df,2pd) and the ab initio CBS-Q, have been used to calculate optimized geometries, energy minima at 0 K and enthalpies and free energies at 298 K for atoms and molecules involved in the ignition and/or combustion of boron. Calculated gas-phase heats of formation are presented for 58 atoms and molecules and are used to find heats of reaction for 83 possible ignition/combustion steps. The most exothermic are found to be $\mathrm{BO}+\mathrm{F} \rightarrow \mathrm{FBO}$ and $\mathrm{BO}+\mathrm{O} \rightarrow$ BO_{2}. It is shown that $\Delta H(298 \mathrm{~K})$ and $\Delta H(2000 \mathrm{~K})$ differ, on the average, by only $1.5 \mathrm{kcal} / \mathrm{mol}$; however, ΔG can change quite considerably over the same temperature range. Relative stabilities and equilibrium constants are given for five pairs of isomers. While the geometries were obtained more accurately by the B3PW91 procedure, the CBS-Q is more reliable for heats of formation and heats of reaction.

Introduction

Due to the large and negative heats of formation of solid and liquid $\mathrm{B}_{2} \mathrm{O}_{3}$, both about $-300 \mathrm{kcal} / \mathrm{mol},{ }^{1}$ the oxidation of boron to either of these products is a highly exothermic process, releasing about 15 kcal per gram of boron. Accordingly, boron has long been of interest as a component of propellant formulations, particularly in combination with liquid hydrocarbons. ${ }^{2-8}$ In practice, however, there are significant obstacles to achieving the potential level of performance. These include the formation of a protective oxide layer which hinders the ignition of the boron particles, the generation of boron oxyhydride intermediates which impede the combustion process, and a slow rate of condensation to the desired liquid or solid final product. It has been found that improvements in both ignition and combustion efficiency can be realized by the inclusion of fluorine in the formulation, e.g., as NF_{2} functional groups on the oxidizers and/or binders. ${ }^{9-13}$ This does not diminish the potential energy release; for example, the conversion of boron to $\mathrm{BF}_{3}(\mathrm{~g})$ produces about 27 kcal per gram of boron. ${ }^{1}$

Extensive efforts are underway to quantitatively model the complex processes of boron ignition and combustion in oxygen/ fluorine systems. ${ }^{10-12}$ These modeling studies require considerable thermodynamic and kinetic data (e.g., heats of reaction, activation barriers, etc.), not all of which are currently known with sufficient accuracy. ${ }^{10,12,13}$ In the present work, we have applied high-level computational techniques to obtain enthalpies, free energies, and heats of formation for 66 atoms and molecules that have been implicated in the oxygen/fluorine oxidation of boron. These results can be used to find heats of reaction and equilibrium constants for several hundred possible ignition and combustion steps. Some applications will be presented and discussed.

Methods

For each atom and molecule, two different computational approaches were used, the density functional B3PW91/6$311+\mathrm{G}(2 \mathrm{df}, 2 \mathrm{pd})$ procedure (which combines the Becke threeparameter hybrid ${ }^{14}$ and the Perdew-Wang correlation ${ }^{15}$ functionals) and the ab initio CBS-Q. ${ }^{16}$ In a recent B3PW91/6$311+G(2 d f)$ study of the decomposition of ammonium -
perchlorate, ${ }^{17}$ experimental heats of reaction were reproduced with an average absolute error of $1.6 \mathrm{kcal} / \mathrm{mol}$, while the CBS-Q technique has been shown to give atomization energies and heats of formation to within, on the average, $1.0 \mathrm{kcal} / \mathrm{mol}$ of experiment. ${ }^{16,18}$ In this work, all calculations were carried out with the Gaussian 94 code. ${ }^{19}$
With each computational method, we obtained optimized geometries, energy minima at 0 K , and enthalpies and free energies at 298 K . The enthalpies were converted to gas-phase heats of formation, using the definition of the latter as ΔH for the formation of the compound from its elements; no correction terms were introduced. Since boron and carbon are solids at 298 K , their experimental heats of sublimation (134.5 and 171.3 $\mathrm{kcal} / \mathrm{mol}$, respectively ${ }^{20}$) were included in finding ΔH for the formation of boron- and carbon-containing compounds.
The combustion of boron occurs at elevated temperatures, which may exceed $3000 \mathrm{~K} .{ }^{10-12}$ To assess the effects of temperature upon our calculated thermodynamics quantities, we also computed, for 12 molecules, the enthalpies and free energies at 2000 K and the constant volume heat capacities, C_{V}, at both 298 and 2000 K .

Results and Discussion

A. Structures. Experimental structures are available for 34 of the molecules included in this study. ${ }^{21-25}$ Our optimized geometries are in good agreement with these; the B3PW91 average bond length and bond angle deviations are $0.008 \AA$ and 1.2°, while the CBS-Q are $0.013 \AA$ and 1.5°.

The results for the boron-containing molecules are presented in Figure 1. These structures were found to have no imaginary vibrational frequencies, confirming that they correspond to energy minima. ${ }^{26}$ Figure 1 contains several sets of isomers; their relative stabilities and potential equilibria will be discussed in a later section. We also investigated some other possible isomers. The cyclic forms of BO_{2} and $\mathrm{B}_{2} \mathrm{O}_{2}, \sqrt{\mathrm{~B}-\mathrm{O}-\mathrm{B}-\mathrm{O}}$, do have B3PW91 energy minima, but they are 90.5 and $72.3 \mathrm{kcal} / \mathrm{mol}$ higher than the linear OBO and OBBO. Similarly, FOB and ClOB both have energy minima, but they are 183.5 and 126.5 $\mathrm{kcal} / \mathrm{mol}$ above FBO and CIBO. These four considerably less stable structures are not included in Figure 1. For the isomeric

$\mathrm{B}-\mathrm{B}$	$\mathrm{B}-\mathrm{H}$
1.615	
1.607	
(1.590)	1.238
	(1.236)

1.190
$\mathrm{B}_{(1.181)}^{1.196}$
$\mathrm{H}^{\prime} \underset{(128)}{129} \mathrm{H}$

$\mathrm{B}-\mathrm{N}$
1.317
1.319
(1.281)
$\mathrm{B}-\mathrm{O}$
1.201
1.213
(1.204)

(planar)

(planar)

Figure 1. Bond lengths (\AA) and bond angles (deg) in boron-containing molecules. The top two values in each instance are computed by the B3PW91/6-311+G(2df,2pd) and CBS-Q procedures, respectively; experimental data, when available, are given in parentheses. The latter are from ref 21, except for HBO (ref 24), FBO (ref 23), and ClBO (ref 22).
pairs, $\mathrm{HOBF} / \mathrm{HB}(\mathrm{O}) \mathrm{F}$ and $\mathrm{HOBCl} / \mathrm{HB}(\mathrm{O}) \mathrm{Cl}$, we tried to optimize the geometries of HBOF and HBOCl . In each instance, the halogen atom preferentially moved to the boron, forming $\mathrm{HB}(\mathrm{O}) \mathrm{F}$ and $\mathrm{HB}(\mathrm{O}) \mathrm{Cl}$. Finally, we were able to optimize the cyclic form of BOB only as a triplet, in contrast to its two linear isomers which are singlets.
B. Energies, Enthalpies, and Free Energies. In Table 1 are listed the computed energy minima at 0 K and the enthalpies and free energies at 298 K for 66 atoms and molecules. We have shown earlier that the quantity $\Delta H=H(298 \mathrm{~K})-E_{\text {min }}$ $(0 \mathrm{~K})$ is nearly the same for three different density functional combinations (B3LYP, B3P86, and B3PW91) and several basis sets. ${ }^{17}$ Table 2 confirms that this is true as well for $\Delta G=$ $G(298 \mathrm{~K})-E_{\min }(0 \mathrm{~K})$, when calculated at the B3LYP/6$311+G(2 d f)$ and B3PW91/6-311+G(2df,2pd) levels. However, this consistency does not extend to the CBS-Q results; in two instances, CO_{2} and BF_{3}, the CBS-Q ΔH and/or ΔG is quite different from the B3LYP and B3PW91 values. This presumably reflects the fact that the former procedure uses

Hartree-Fock vibrational frequencies in evaluating ΔH and $\Delta G .{ }^{27}$
C. Heats of Formation. The enthalpies at 298 K were used to obtain the heats of formation given in Table 3. Experimental values are included when available. For the B3PW91 results, the average absolute deviation from experiment is $3.5 \mathrm{kcal} / \mathrm{mol}$; for the CBS-Q, it is $2.5 \mathrm{kcal} / \mathrm{mol}$. By both procedures, particularly large deviations are found for BF_{2}, followed by $\mathrm{H}_{3} \mathrm{~B}_{3} \mathrm{O}_{3}$. If these compounds are omitted, the B3PW91 average absolute deviation decreases to $2.9 \mathrm{kcal} / \mathrm{mol}$ and the CBS-Q to $1.7 \mathrm{kcal} / \mathrm{mol}$. In view of the excellent overall accuracy of the computed heats of formation, particularly the CBS-Q, it seems reasonable to suggest that the experimental values be reexamined in these two cases.

The experimental heats of formation of $\mathrm{BH}_{2}(48 \pm 15 \mathrm{kcal} /$ $\mathrm{mol})$ and $\mathrm{BCl}_{2}(-20 \pm 15 \mathrm{kcal} / \mathrm{mol})$ are not included in Table 3 because of the very large estimated uncertainties. ${ }^{20}$ It is notable, however, that a recent very thorough ab initio UCCSD(T)/CBS calculation predicts the heat of formation of BH_{2} to

TABLE 1: Computed Energy Minima, Enthalpies, and Free Energies at 298 K, in Hartrees

atom or molecule	B3PW91/6-311+G(2df,2pd)			CBS-Q		
	$E_{\text {min }}(0 \mathrm{~K})$	H (298 K)	$G(298 \mathrm{~K})$	$E_{\text {min }}$	H (298 K)	$G(298 \mathrm{~K})$
H	-0.50398	-0.50162	-0.51463	-0.49982	-0.49746	-0.51047
B	-24.64354	-24.64118	-24.65758	-24.60161	-24.59925	-24.61565
C	-37.83546	-37.83310	-37.85001	-37.78515	-37.78279	-37.79970
N	-54.57895	-54.57659	-55.59398	-54.52026	-54.51790	-54.53529
O	-75.05961	-75.05725	-75.07456	-74.98704	-74.98468	-75.00200
F	-99.72343	-99.72107	-99.73824	-99.64217	-99.63981	-99.65699
Cl	-460.11123	-460.10887	-460.12691	-459.68285	-459.68049	-459.69853
H_{2}	-1.17895	-1.16559	-1.18039	-1.17581	-1.16277	-1.17753
B_{2}	-49.39104	-49.38539	-49.40837	-49.30560	-49.30021	-49.32325
N_{2}	-109.51673	-109.50782	-109.52956	-109.40175	-109.39265	-109.41435
O_{2}	-150.31826	-150.31113	-150.33439	-150.16693	-150.15942	-150.18261
F_{2}	-199.50459	-199.49882	-199.52177	-199.34671	-199.34092	-199.36379
Cl_{2}	-920.31493	-920.31017	-920.33545	-919.46087	-919.45612	-919.48140
BH	-25.27798	-25.26937	-25.28888	-25.23709	-25.22858	-25.24809
BH_{2}	-25.92821	-25.91003	-25.93207	-25.86980	-25.85208	-25.87415
NH	-55.21982	-55.20903	-55.22957	-55.15127	-55.14056	-55.16108
OH	-75.73390	-75.72207	-75.74230	-75.65726	-75.64557	-75.66576
$\mathrm{H}_{2} \mathrm{O}$	-76.43319	-76.40796	-76.42938	-76.35766	-76.33269	-76.35404
HO_{2}	-150.90608	150.88801	-150.91400	-150.75266	-150.73435	-150.76025
$\mathrm{H}_{2} \mathrm{O}_{2}$	-151.55072	-151.51965	-151.54537	-151.40313	-151.37197	-151.39773
HF	-100.44856	-100.43584	-100.45555	-100.36810	-100.35576	-100.37543
HCl	-460.78355	-460.77346	-460.79464	-460.35374	-460.34377	-460.36493
BN	-79.39970	-79.39278	-79.41628	-79.28645	-79.27945	-79.30291
BO	-100.01583	-100.00814	-100.03124	-99.89797	-99.89030	-99.91337
BO_{2}	-175.28792	-175.27617	-175.30161	-175.09464	-175.08735	-175.10935
BOB	-124.80723	-124.79670	-124.81863	-124.65579	-124.64549	-124.66932
BBO	-124.78399	-124.77252	-124.79923	-124.63104	-124.61949	-124.64579
$\mathrm{BOB}^{\text {a }}$ b	-124.76567	-124.75440	-124.78186	-124.59033	-124.57917	-124.60661
$\mathrm{B}_{2} \mathrm{O}_{2}$	-200.21462	-200.19623	-200.22317	-199.98572	-199.96741	-199.99416
$\mathrm{B}_{2} \mathrm{O}_{3}$	-275.51460	-275.49010	-275.52315	-275.21283	-275.18864	-275.22164
$\mathrm{B}_{2} \mathrm{O}_{4}$	-350.65287	-350.62533	-350.65948	-350.27038	-350.24258	-350.27659
BF	-124.65294	-124.64643	-124.66919	-124.53412	-124.52784	-124.55061
BF_{2}	-224.56499	-224.55394	-224.51894	-224.35519	-224.34441	-224.37243
BF_{3}	-324.55576	-324.53889	-324.56948	-324.27559	-324.25900	-324.28791
BCl	-484.94879	-484.94351	-484.96771	-484.48147	-484.47632	-484.50057
BCl_{2}	-945.19839	-945.18958	-945.22026	-944.29303	-944.28436	-944.31512
BCl_{3}	-1405.49500	-1405.48206	-1405.51490	-1404.17086	-1404.15812	-1404.19109
CN	-92.69915	-92.69092	-92.71390	-92.59042	-92.58295	-92.60592
CO	-113.30216	-113.29379	-113.31621	-113.18659	-113.17818	-113.20058
CO_{2}	-188.57886	-188.56350	-188.58773	-188.38316	-188.36963	-188.38973
CF_{4}	-437.48532	-437.46351	-437.49453	-437.11918	-437.09673	-437.12632
NO	-129.88330	-129.87543	-129.89872	-129.75172	-129.74371	-129.76696
NO_{2}	-205.07195	-205.05915	-205.08636	-204.86079	-204.84777	-204.87553
$\mathrm{N}_{2} \mathrm{O}$	-184.65730	-184.64240	-184.66731	-184.45881	-184.44390	-184.46876
ClO	-535.27663	-535.27122	-535.29629	-534.77212	-534.76700	-534.79217
ClO_{2}	-610.42863	-610.41871	-610.44785	-609.85961	-609.84964	-609.87938
HBO	-100.70148	-100.68361	-100.70662	-100.58459	-100.56696	-100.58993
HOB	-100.62657	-100.60931	-100.63425	-100.51095	-100.49403	-100.51894
HBOH	-101.23385	-101.20594	-101.23222	-101.10484	-101.07750	-101.10379
HOBO	-175.97870	-175.95401	-175.98156	-175.78942	-175.76521	-175.79276
HBOB^{a}	-125.44008	-125.41881	-125.44699	-125.26455	-125.24380	-125.27198
HBOB	-125.41766	-125.39786	-125.42762	-125.24886	-125.22948	-125.25966
$\mathrm{B}(\mathrm{OH})_{2}$	-176.52754	-176.49173	-176.52123	-176.32866	-176.29321	-176.32266
$\mathrm{B}(\mathrm{OH})_{3}$	-252.49508	-252.44062	-252.47132	-252.23214	-252.17848	-252.20916
$\mathrm{H}_{4} \mathrm{~B}_{2} \mathrm{O}_{4}$	-353.21491	-353.13820	-353.17706	-352.83179	-352.75608	-352.79418
$\mathrm{H}_{3} \mathrm{~B}_{3} \mathrm{O}_{3}$	-302.28491	-302.22411	-302.25841	-301.92985	-301.87058	-301.90492
HCO	-113.84715	-113.83026	-113.85571	-113.71731	-113.70038	-113.72577
HNO	-130.46830	-130.45049	-130.47552	-130.33596	-130.31739	-130.34235
HONO	-205.70116	-205.67654	-205.70467	-205.49448	-205.46909	-205.49705
FBO	-199.99530	-199.98201	-200.00749	-199.80221	-199.79024	-199.81047
$\mathrm{F}_{2} \mathrm{CO}$	-313.01220	-312.99394	-313.02398	-312.72874	-312.71000	-312.73995
CIBO	-560.31949	-560.30739	-560.33422	-559.77710	-559.76591	-559.78922
$\mathrm{HB}(\mathrm{O}) \mathrm{F}$	-200.53291	-200.51239	-200.54161	-200.32736	-200.30640	-200.33546
HOBF	-200.54855	-200.52494	-200.55395	-200.34448	-200.32130	-200.35031
$\mathrm{HB}(\mathrm{O}) \mathrm{Cl}$	-560.85507	-560.83580	-560.86666	-560.30083	-560.28115	-560.31161
HOBCl	-560.86546	-560.84297	-560.87332	-560.31346	-560.29138	-560.32179

${ }^{a}$ Three-membered ring. ${ }^{b}$ This is a triplet, in contrast to its two isomers which are singlets.
be $78.4 \pm 0.4 \mathrm{kcal} / \mathrm{mol},{ }^{28}$ in remarkable agreement with our CBS-Q value.
D. Effects of Temperature Upon $\boldsymbol{\Delta H}$ and $\boldsymbol{\Delta} \boldsymbol{G}$. In Table 4, are presented the enthalpies, free energies, and constant volume heat capacities for 12 molecules, computed at both 298 and 2000
K. The latter was selected as representative of the elevated temperatures associated with boron combustion.

While the values of all of these properties for any individual molecule change significantly over this temperature range, the changes in enthalpies largely cancel in calculating ΔH for a

TABLE 2: Computed Changes in Enthalpy and Free Energy between 0 and 298 K , in $\mathrm{kcal} / \mathrm{mol}^{a}$

		B3LYP/ 6-311+G(2df)	B3PW91/ 6-311+G(2df, 2pd)	CSB-Q
molecule				
$\mathrm{H}_{2} \mathrm{O}$	ΔH	15.7	15.8	15.7
	ΔG	2.3	2.4	2.3
CO_{2}	ΔH	9.6	9.6	8.5
	ΔG	-5.6	-5.6	-4.1
BF_{3}	ΔH	10.5	10.6	10.4
	ΔG	-8.7	-8.6	-7.7
$\mathrm{~B}_{2} \mathrm{O}_{3}$	ΔH	15.3	15.4	15.2
	ΔG	-5.4	-5.4	-5.5
HOBO	ΔG	15.4	15.5	15.2
	ΔH	-1.9	-1.8	-2.1
HCO	ΔH	10.5	10.6	10.6
	ΔH	-5.5	-5.4	-5.3

${ }^{a}$ Zero-point energy is included.
reaction. Thus, Table 5 shows, for a group of seven reactions, that $\Delta H(2000 \mathrm{~K})$, when obtained directly from the enthalpies at 2000 K , differs by an average of only $1.5 \mathrm{kcal} / \mathrm{mol}$ from ΔH (298 K). (The same point has been demonstrated earlier for a different set of reactions and a range of $298-800 \mathrm{~K},{ }^{17}$ and it is also fully consistent with experimental data. ${ }^{29}$) ΔH (2000 K) can also be determined with the Kirchhoff equation, ${ }^{29}$

$$
\begin{equation*}
\Delta H\left(T_{2}\right)=\Delta H\left(T_{1}\right)+\int_{T_{1}}^{T_{2}} \Delta C_{\mathrm{P}} \mathrm{~d} T \tag{1}
\end{equation*}
$$

where ΔC_{P} is the change in the sum of the constant pressure heat capacities in going from reactants to products. Taking ΔC_{P} to be temperature-independent (an approximation) and since C_{P} $=C_{\mathrm{V}}+R$ (for an ideal gas, R being the gas constant), ΔH (2000 K) was evaluated for the reactions in Table 5, first using $C_{\mathrm{V}}(298 \mathrm{~K})$ and then the average of $C_{\mathrm{V}}(298 \mathrm{~K})$ and $C_{\mathrm{V}}(2000$ $\mathrm{K})$. While the second approach gives better results, overall the best estimates of $\Delta H(2000 \mathrm{~K})$ for these reactions actually are provided by $\Delta H(298 \mathrm{~K})$.

Table 5 also gives $\Delta G(298 \mathrm{~K})$ and $\Delta G(2000 \mathrm{~K})$, obtained from the calculated free energies at those temperatures. Unlike $\Delta H, \Delta G$ can change considerably in going from 298 to 2000 K. This can also be treated by means of the Gibbs-Helmholtz equation, ${ }^{29}$

$$
\begin{equation*}
\left[\frac{\partial\left(\frac{\Delta G}{T}\right)}{\partial T}\right]_{\mathrm{P}}=-\frac{\Delta H}{T^{2}} \tag{2}
\end{equation*}
$$

If ΔH is taken to be temperature-independent, then eq 2 can be integrated to give

$$
\begin{equation*}
\Delta G(2000 \mathrm{~K})=6.7080 \Delta G(298 \mathrm{~K})-5.7080 \Delta H \tag{3}
\end{equation*}
$$

Table 5 shows the results of using either $\Delta H(298 \mathrm{~K})$ or the average of $\Delta H(298 \mathrm{~K})$ and $\Delta H(2000 \mathrm{~K})$ in eq 3. (The ΔG (2000 K) obtained by these two approaches differ by an average $4.1 \mathrm{kcal} / \mathrm{mol}$, showing how sensitive they are to the exact value used for ΔH.) The average absolute differences from the directly evaluated $\Delta G(2000 \mathrm{~K})$ are 4.4 and $4.5 \mathrm{kcal} / \mathrm{mol}$, respectively.

TABLE 3: Calculated and Experimental Gas-Phase Heats of Formation, in kcal/mol

molecule	B3PW91	CBS-Q	expt ${ }^{\text {a }}$
H	50.9	52.7	52.10
B			134.5
C			171.3
N	111.3	112.0	113.0
O	61.7	59.6	59.6
F	17.8	19.2	19.0 ± 0.1
Cl	29.0	29.9	29.0
B_{2}	204.3	205.2	
BH	106.0	104.4	105.8 ± 2
BH_{2}	69.7	78.0	
NH	80.1	86.1	90.0 ± 4.0
OH	10.2	9.7	9.3 ± 0.3
HO_{2}	3.7	4.1	2.5
$\mathrm{H}_{2} \mathrm{O}$	-54.5	-56.6	-57.80
$\mathrm{H}_{2} \mathrm{O}_{2}$	-27.0	-31.2	-32.6
HF	-65.0	-65.2	-65.1 ± 0.2
HCl	-22.3	-21.5	-22.1 ± 0.04
BN	135.9	144.6	
BO	1.8	1.9	0
BO_{2}	-68.7	-71.7	-72
BOB	43.9	38.5	
BBO	59.0	54.8	
BOB^{b}	70.4	80.1	
$\mathrm{B}_{2} \mathrm{O}_{2}$	-109.2	-113.5	-109 ± 2
$\mathrm{B}_{2} \mathrm{O}_{3}$	-196.0	-202.3	-201.3
$\mathrm{B}_{2} \mathrm{O}_{4}$	-183.2	-186.1	
BF	-26.0	-27.5	-27.7
BF_{2}	-125.2	-119.2	-141.0 ± 3
BF_{3}	-273.0	-272.4	-271.7
BCl	42.1	41.0	33.8
BCl_{2}	-15.0	-9.2	
BCl_{3}	-101.2	-100.6	-96
CN	106.1	106.1	104.0 ± 2
CO	-20.2	-26.8	-26.42
CO_{2}	-91.8	-96.9	-94.05
NO	21.4	20.3	21.82
NO_{2}	3.7	5.0	7.9
$\mathrm{N}_{2} \mathrm{O}$	13.2	17.9	19.6
ClO	24.7	25.6	24.4
ClO_{2}	29.8	23.7	23 ± 2
HBO	-56.3	-57.9	
BOH	-9.7	-12.1	
HOBO	-128.4	-132.3	-134
$\mathrm{HBOB}^{\text {b }}$	19.2	27.9	
HBOB	32.3	36.9	
HBOH	-18.4	-13.4	
$\mathrm{B}(\mathrm{OH})_{2}$	-100.1	-98.8	
$\mathrm{B}(\mathrm{OH})_{3}$	-232.2	-239.5	
$\mathrm{H}_{4} \mathrm{~B}_{2} \mathrm{O}_{4}$	-297.3	-304.0	
$\mathrm{H}_{3} \mathrm{~B}_{3} \mathrm{O}_{3}$	-277.6	-280.2	-291
$\mathrm{H}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$	-523.6		
HCO	8.9	10.3	10.7
HNO	26.2	25.1	24
HONO	-18.0	-20.1	-19
FBO	-139.0	-142.1	
$\mathrm{HB}(\mathrm{O}) \mathrm{F}$	-106.1	-101.2	
HOBF	-114.0	-110.5	
CIBO	-88.6	-90.7	
$\mathrm{HB}(\mathrm{O}) \mathrm{Cl}$	-54.5	-49.2	
HOBCl	-59.0	-55.6	

${ }^{a}$ Reference 20. The cited values for BH_{2} and BCl_{2} are not included because the error ranges are both $\pm 15 \mathrm{kcal} / \mathrm{mol}$. ${ }^{b}$ Three-membered ring.
E. Relative Stabilities of Isomers. Table 1 contains five pairs of isomers. (Only the singlet forms of $\mathrm{B}_{2} \mathrm{O}$ will be compared.) As mentioned earlier, we did also find energy minima for the molecules $\mathrm{FOB}, \mathrm{ClOB}$, and a cyclic form of $\mathrm{B}_{2} \mathrm{O}_{2}$; however, these minima are so much higher than the energies of FBO, ClBO , and $\mathrm{O}=\mathrm{B}-\mathrm{B}=\mathrm{O}$ that the former three molecules are not included in Table 1 and Figure 1.

TABLE 4: Computed ${ }^{a}$ Thermochemical Properties at 298 and 2000 K

molecule	$T, \mathrm{~K}$	H, hartrees	G, hartrees	C_{V}, cal/deg mol
H_{2}	298	-1.16559	-1.18039	4.97
	2000	-1.14671	-1.28968	6.06
O_{2}	298	-150.31113	-150.33439	5.01
	2000	-150.28916	-150.49352	6.77
$\mathrm{~F}_{2}$	298	-199.49882	-199.52177	5.28
	2000	-199.47577	-199.68072	6.88
BH	298	-25.26937	-25.28888	4.97
	2000	-25.24836	-25.42588	6.63
BO_{2}	298	-175.27617	-175.30161	7.98
	2000	-175.23962	-175.49116	12.67
BF	298	-124.64643	-124.66919	5.07
	2000	-124.62402	-124.82603	6.83
BF_{3}	298	-324.53889	-324.56948	10.11
	2000	-324.49114	-324.79035	17.49
CO	298	-113.29379	-113.31621	4.97
	2000	-113.27262	-113.46980	6.63
HBO	298	-100.68361	-100.70662	6.36
	2000	-100.65053	-100.87584	12.13
HCO	298	-113.83026	-113.85571	6.26
	2000	-113.80024	-114.03653	11.17
FBO	298	-199.98201	-200.00749	7.75
	2000	-199.94650	-200.19603	12.53
$\mathrm{HB}(\mathrm{O}) \mathrm{F}$	298	-200.51239	-200.54161	9.00
	2000	-200.46721	-200.76217	17.18

${ }^{a}$ B3PW91/6-311+G(2df,2pd).
The relative enthalpies and free energies at 298 K within the five sets of isomers are in Table 6. The results for the two computational procedures are in generally good agreement, the largest differences being for the HBOB pair. The table also shows the equilibrium constants K for the conversions of the more stable into the less stable forms, calculated using the equation ${ }^{29}$

$$
\begin{equation*}
K=\exp (-\Delta G / R T) \tag{4}
\end{equation*}
$$

which shows K to be very sensitive to the magnitude of ΔG. It can be seen that the presence of the less stable isomer is expected to be most significant for the $\mathrm{HOBCl} / \mathrm{HB}(\mathrm{O}) \mathrm{Cl}$ pair.

It is particularly relevant to note the difference in stability between HBO and HOB, since a possible role for the latter has been mentioned on several occasions. ${ }^{4,5,7,13}$ The data in Table 6 indicate that this is likely to be minimal.
F. Heats of Reaction. Table 7 lists 83 reactions that have been implicated or suggested as being involved, in either the forward or reverse direction, in the ignition and/or combustion of boron. 4,5,7,8,10,12,13,30,31

We have used the heats of formation in Table 3 to compute the B3PW91 and CBS-Q heats of reaction for these processes, ΔH (298 K). Experimental values are included when possible, although not for reactions involving $\mathrm{BH}_{2}, \mathrm{BF}_{2}$, and BCl_{2}, for which the heats of formation are unreliable or suspect, as discussed earlier. The data in Table 3 could similarly be used to find $\Delta H(298 \mathrm{~K})$ for many other possible processes.

The B3PW91 and CBS-Q results in Table 7 are in overall good agreement with each other and with experiment. The average absolute deviations from the latter are $2.6 \mathrm{kcal} / \mathrm{mol}$ (B3PW91) and $2.5 \mathrm{kcal} / \mathrm{mol}$ (CBS-Q). The average absolute deviation between the two sets of calculated heats of reaction is $2.8 \mathrm{kcal} / \mathrm{mol}$. In view of the greater accuracy of the CBS-Q heats of formation, it seems reasonable to prefer the CBS-Q heats of reaction to the B3PW91 when the two differ significantly.

By far the most exothermic process in Table 7 is

$$
\mathrm{BO}+\mathrm{F} \rightarrow \mathrm{FBO}
$$

$\Delta H(298 \mathrm{~K}), \mathrm{CBS}-\mathrm{Q}=-163.2 \mathrm{kcal} / \mathrm{mol}$
followed by

$$
\mathrm{BO}+\mathrm{O} \rightarrow \mathrm{BO}_{2}
$$

$\Delta H(298 \mathrm{~K}), \mathrm{CBS}-\mathrm{Q}=-133.2 \mathrm{kcal} / \mathrm{mol}$
Four other highly energy releasing reactions are $2 \mathrm{BO} \rightarrow \mathrm{B}_{2} \mathrm{O}_{2}$, $2 \mathrm{~B}(\mathrm{~s})+\mathrm{O}_{2} \rightarrow \mathrm{~B}_{2} \mathrm{O}_{2}, \mathrm{BO}_{2}+\mathrm{H} \rightarrow \mathrm{HOBO}$, and $\mathrm{BO}+\mathrm{H} \rightarrow$ HBO. All of them have $\Delta H(298 \mathrm{~K}), \mathrm{CBS}-\mathrm{Q}$ between -112 and $-118 \mathrm{kcal} / \mathrm{mol}$.

TABLE 5: Comparisons of ΔH and ΔG, in $\mathrm{kcal} / \mathrm{mol}$, at 298 and 2000 K

reaction	ΔH (298 K)	ΔH (2000 K)			$\begin{gathered} \Delta G \\ (298 \mathrm{~K}) \end{gathered}$	$\Delta G(2000 \mathrm{~K})$		
		H (2000 K)	$\begin{gathered} \text { eq 1, } \\ C_{\mathrm{V}}(298 \mathrm{~K}) \end{gathered}$	$\begin{gathered} \hline \text { eq 1, } \\ C_{\mathrm{V}}(\text { avg }) \end{gathered}$		$G(2000 \mathrm{~K})$	$\begin{gathered} \text { eq 3, } \\ \Delta H(298 \mathrm{~K}) \end{gathered}$	$\begin{gathered} \text { eq 3, } \\ \Delta H(\text { avg }) \end{gathered}$
$2 \mathrm{BH}+\mathrm{O}_{2} \rightarrow 2 \mathrm{HBO}$	-324.6	-323.3	-331.8	-326.3	-314.4	-255.0	-256.2	-259.8
$2 \mathrm{CO}+\mathrm{H}_{2} \rightarrow 2 \mathrm{HCO}$	58.1	57.4	50.6	55.3	63.6	98.0	95.0	96.9
$2 \mathrm{HBO}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2}+2 \mathrm{BO}_{2}$	-24.8	-22.4	-19.3	-21.7	-22.6	-16.8	-10.6	-16.7
$2 \mathrm{BF}+\mathrm{H}_{2} \rightarrow 2 \mathrm{BH}+\mathrm{F}_{2}$	264.1	265.0	264.3	264.5	263.1	256.8	257.4	254.9
$2 \mathrm{HBO}+\mathrm{F}_{2} \rightarrow 2 \mathrm{FBO}+\mathrm{H}_{2}$	-165.4	-165.0	-161.2	-163.3	-163.4	-156.5	-152.0	-153.2
$2 \mathrm{BH}+3 \mathrm{~F}_{2} \rightarrow 2 \mathrm{BF}_{3}+\mathrm{H}_{2}$	-758.1	-756.1	-765.9	-759.3	-738.1	-612.7	-623.9	-629.5
$\mathrm{HBO}+\mathrm{BF}+\mathrm{O}_{2} \rightarrow \mathrm{HB}(\mathrm{O}) \mathrm{F}+\mathrm{BO}_{2}$	-92.5	-89.8	-95.0	-95.9	-83.5	-36.4	-32.1	-39.8

TABLE 6: Relative Stabilities of Isomers

isomer	relative H $(298 \mathrm{~K})$, $\mathrm{kcal} / \mathrm{mol}$		relative $G(298 \mathrm{~K})$, $\mathrm{kcal} / \mathrm{mol}$		equilibrium constant, more stable \Leftrightarrow less stable	
	B3PW91	CBS-Q	B3PW91	CBS-Q	B3PW91	CBS-Q
$\mathrm{BBO}^{\text {a }}$	15.2	16.3	12.2	14.8		
BOB^{a}	0	0	0	0	1.2×10^{-9}	1.5×10^{-11}
HOB	46.6	45.8	45.4	44.5		
HBO	0	0	0	0	5.1×10^{-34}	2.2×10^{-33}
HBOB	13.1	9.0	12.2	7.7		
$\mathrm{HBOB}^{\text {b }}$	0	0	0	0	1.2×10^{-9}	2.2×10^{-6}
$\mathrm{HB}(\mathrm{O}) \mathrm{F}$	7.9	9.3	7.7	9.3		
HOBF	0	0	0	0	2.1×10^{-6}	1.5×10^{-7}
$\mathrm{HB}(\mathrm{O}) \mathrm{Cl}$	4.5	6.4	4.2	6.4		
HOBCl	0	0	0	0	8.6×10^{-4}	2.1×10^{-5}

[^0]TABLE 7: Calculated and Experimental Heats of Reaction at 298 K , in kcal/mole ${ }^{a}$

reaction	B3PW91	CBS-Q	expt ${ }^{\text {b }}$	reaction	B3PW91	CBS-Q	expt ${ }^{\text {b }}$
$\mathrm{B}(\mathrm{s})+\mathrm{H} \rightarrow \mathrm{BH}$	55.1	51.7	53.7	$2 \mathrm{BO} \rightarrow \mathrm{B}_{2} \mathrm{O}_{2}$	-112.8	-117.3	-109
$\mathrm{B}(\mathrm{s})+\mathrm{O} \rightarrow \mathrm{BO}$	-59.9	-57.7	-60	$\mathrm{BO}+\mathrm{BO}_{2} \rightarrow \mathrm{~B}_{2} \mathrm{O}_{2}+\mathrm{O}$	19.4	15.9	23
$\mathrm{B}(\mathrm{s})+\mathrm{F} \rightarrow \mathrm{BF}$	-43.8	-46.7	-46.7	$\mathrm{BO}+\mathrm{CO}_{2} \rightarrow \mathrm{BO}_{2}+\mathrm{CO}$	1.1	-3.5	-4
$\mathrm{B}(\mathrm{s})+\mathrm{O}_{2} \rightarrow \mathrm{BO}_{2}$	-68.7	-71.7	-72	$\mathrm{BO}+\mathrm{HBO} \rightarrow \mathrm{B}_{2} \mathrm{O}_{2}+\mathrm{H}$	-3.8	-4.8	
$\mathrm{B}(\mathrm{s})+\mathrm{O}_{2} \rightarrow \mathrm{BO}+\mathrm{O}$	63.5	61.5	60	$\mathrm{BO}+\mathrm{BF}_{2} \rightarrow \mathrm{FBO}+\mathrm{BF}$	-41.6	-52.3	
$2 \mathrm{~B}(\mathrm{~s})+\mathrm{O}_{2} \rightarrow 2 \mathrm{BO}$	3.6	3.8	0	$\mathrm{BO}+\mathrm{BF}_{3} \rightarrow \mathrm{FBO}+\mathrm{BF}_{2}$	7.0	9.2	
$2 \mathrm{~B}(\mathrm{~s})+\mathrm{O}_{2} \rightarrow \mathrm{~B}_{2} \mathrm{O}_{2}$	-109.2	-113.5	-109	$\mathrm{BO}+\mathrm{HOBO} \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}+\mathrm{H}$	-18.5	-19.2	-15.2
$\mathrm{B}(\mathrm{s})+\mathrm{OH} \rightarrow \mathrm{HBO}$	-66.5	-67.6		$\mathrm{BO}+\mathrm{HOBO} \rightarrow \mathrm{B}_{2} \mathrm{O}_{2}+\mathrm{OH}$	27.6	26.6	34
$\mathrm{B}(\mathrm{s})+\mathrm{OH} \rightarrow \mathrm{BO}+\mathrm{H}$	42.5	44.9	43	$\mathrm{BO}+\mathrm{FBO} \rightarrow \mathrm{B}_{2} \mathrm{O}_{2}+\mathrm{F}$	45.8	45.9	
$2 \mathrm{~B}(\mathrm{~s})+\mathrm{OH} \rightarrow \mathrm{BH}+\mathrm{BO}$	97.6	96.6	97	$\mathrm{BO}+\mathrm{FBO} \rightarrow \mathrm{BO}_{2}+\mathrm{BF}$	42.5	41.0	
$\mathrm{B}(\mathrm{s})+\mathrm{HF} \rightarrow \mathrm{BF}+\mathrm{H}$	89.9	90.4	89.5	$\mathrm{BO}_{2}+\mathrm{H} \rightarrow \mathrm{HOBO}$	-110.6	-113.3	-114
$2 \mathrm{~B}(\mathrm{~s})+\mathrm{HF} \rightarrow \mathrm{BH}+\mathrm{BF}$	145.0	142.1	143.2	$\mathrm{BO}_{2}+\mathrm{H} \rightarrow \mathrm{HBO}+\mathrm{O}$	23.2	20.7	
$\mathrm{B}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HBO}+\mathrm{H}$	49.1	51.4		$\mathrm{BO}_{2}+\mathrm{F} \rightarrow \mathrm{FBO}+\mathrm{O}$	-26.4	-30.0	
$2 \mathrm{~B}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BH}+\mathrm{HBO}$	104.2	103.1		$\mathrm{BO}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{HOBO}+\mathrm{H}$	-8.8	-7.9	-9.9
$\mathrm{B}(\mathrm{s})+\mathrm{CO}_{2} \rightarrow \mathrm{BO}+\mathrm{CO}$	73.4	72.0	68	$\mathrm{BO}_{2}+\mathrm{OH} \rightarrow \mathrm{HOBO}+\mathrm{O}$	-8.2	-10.7	-12
$\mathrm{B}(\mathrm{s})+\mathrm{BO}_{2} \rightarrow \mathrm{~B}_{2} \mathrm{O}_{2}$	-40.5	-41.8	-37	$\mathrm{BO}_{2}+\mathrm{HF} \rightarrow \mathrm{HOBO}+\mathrm{F}$	23.1	23.8	22
$\mathrm{B}(\mathrm{s})+\mathrm{BO}_{2} \rightarrow 2 \mathrm{BO}$	72.3	75.5	72	$\mathrm{BO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HOBO}+\mathrm{OH}$	5.0	5.7	5.1
$\mathrm{B}(\mathrm{s})+\mathrm{BF}_{2} \rightarrow 2 \mathrm{BF}$	73.2	64.2		$2 \mathrm{BO}_{2} \rightarrow \mathrm{~B}_{2} \mathrm{O}_{3}+\mathrm{O}$	3.1	0.7	2.3
$\mathrm{B}(\mathrm{s})+\mathrm{B}_{2} \mathrm{O}_{3} \rightarrow \mathrm{~B}_{2} \mathrm{O}_{2}+\mathrm{BO}$	88.6	90.7	92	$\mathrm{HBO}+\mathrm{F} \rightarrow \mathrm{HB}(\mathrm{O}) \mathrm{F}$	-67.6	-62.5	
$\mathrm{B}(\mathrm{s})+\mathrm{BF}_{3} \rightarrow \mathrm{BF}+\mathrm{BF}_{2}$	121.8	125.7		$\mathrm{HBO}+\mathrm{F} \rightarrow \mathrm{FBO}+\mathrm{H}$	-49.6	-50.7	
$\mathrm{B}(\mathrm{s})+\mathrm{HOBO} \rightarrow \mathrm{B}_{2} \mathrm{O}_{2}+\mathrm{H}$	70.1	71.5	77	$\mathrm{HBO}+\mathrm{Cl} \rightarrow \mathrm{HB}(\mathrm{O}) \mathrm{Cl}$	-27.2	-21.2	
$\mathrm{B}(\mathrm{s})+\mathrm{HOBO} \rightarrow \mathrm{BO}+\mathrm{HBO}$	73.9	76.3		$\mathrm{HBO}+\mathrm{Cl} \rightarrow \mathrm{ClBO}+\mathrm{H}$	-10.4	-10.0	
$2 \mathrm{~B}(\mathrm{~s})+\mathrm{HOBO} \rightarrow \mathrm{B}_{2} \mathrm{O}_{2}+\mathrm{BH}$	125.2	123.2	131	$\mathrm{HBO}+\mathrm{O}_{2} \rightarrow \mathrm{HOBO}+\mathrm{O}$	-10.4	-14.8	
$\mathrm{B}(\mathrm{s})+\mathrm{FBO} \rightarrow \mathrm{BO}+\mathrm{BF}$	114.8	116.5		$\mathrm{HBO}+\mathrm{OH} \rightarrow \mathrm{HOBO}+\mathrm{H}$	-31.4	-31.4	
$\mathrm{B}+\mathrm{O}_{2} \rightarrow \mathrm{BO}+\mathrm{O}$	-71.0	-73.0	-75	$\mathrm{HOBO}+\mathrm{F} \rightarrow \mathrm{FBO}+\mathrm{OH}$	-18.2	-19.3	
$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HBO}+\mathrm{H}$	-85.4	-83.1		$2 \mathrm{HOBO} \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}$	6.3	5.7	9
$\mathrm{B}+\mathrm{CO}_{2} \rightarrow \mathrm{BO}+\mathrm{CO}$	-61.1	-62.5	-67	$\mathrm{BF}+\mathrm{O}_{2} \rightarrow \mathrm{FBO}+\mathrm{O}$	-51.3	-55.0	
$\mathrm{BO}+\mathrm{H} \rightarrow \mathrm{HBO}$	-109.0	-112.5		$\mathrm{BF}+\mathrm{OH} \rightarrow \mathrm{FBO}+\mathrm{H}$	-72.3	-71.6	
$\mathrm{BO}+\mathrm{O} \rightarrow \mathrm{BO}_{2}$	-132.2	-133.2	-132	$\mathrm{BF}+\mathrm{HF} \rightarrow \mathrm{BF}_{2}+\mathrm{H}$	16.7	26.2	
$\mathrm{BO}+\mathrm{F} \rightarrow \mathrm{FBO}$	-158.6	-163.2		$\mathrm{BF}+\mathrm{BF}_{3} \rightarrow 2 \mathrm{BF}_{2}$	48.6	61.5	
$\mathrm{BO}+\mathrm{F} \rightarrow \mathrm{BF}+\mathrm{O}$	16.1	11.0	13	$\mathrm{BF}_{2}+\mathrm{O} \rightarrow \mathrm{FBO}+\mathrm{F}$	-57.7	-63.3	
$\mathrm{BO}+\mathrm{H}_{2} \rightarrow \mathrm{HBO}+\mathrm{H}$	-7.2	-7.1		$\mathrm{BF}_{2}+\mathrm{HF} \rightarrow \mathrm{BF}_{3}+\mathrm{H}$	-31.9	-35.3	
$\mathrm{BO}+\mathrm{O}_{2} \rightarrow \mathrm{BO}_{2}+\mathrm{O}$	-8.8	-14.0	-12	$\mathrm{FBO}+\mathrm{H} \rightarrow \mathrm{HOBF}$	-25.9	-21.1	
$\mathrm{BO}+\mathrm{OH} \rightarrow \mathrm{HBO}+\mathrm{O}$	-6.6	-9.9		$\mathrm{FBO}+\mathrm{H} \rightarrow \mathrm{HB}(\mathrm{O}) \mathrm{F}$	-18.0	-11.8	
$\mathrm{BO}+\mathrm{OH} \rightarrow \mathrm{BO}_{2}+\mathrm{H}$	-29.8	-30.6	-29	$\mathrm{ClBO}+\mathrm{H} \rightarrow \mathrm{HOBCl}$	-21.3	-17.6	
$\mathrm{BO}+\mathrm{HF} \rightarrow \mathrm{HBO}+\mathrm{F}$	24.7	24.6		$\mathrm{ClBO}+\mathrm{H} \rightarrow \mathrm{HB}(\mathrm{O}) \mathrm{Cl}$	-16.8	-11.2	
$\mathrm{BO}+\mathrm{HF} \rightarrow \mathrm{HOBF}$	-50.8	-47.2		$\mathrm{H}+\mathrm{O}_{2} \rightarrow \mathrm{OH}+\mathrm{O}$	21.0	16.6	16.8
$\mathrm{BO}+\mathrm{HF} \rightarrow \mathrm{HB}(\mathrm{O}) \mathrm{F}$	-42.9	-37.9		$\mathrm{H}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}+\mathrm{H}_{2}$	13.8	13.6	15.0
$\mathrm{BO}+\mathrm{HCl} \rightarrow \mathrm{HBO}+\mathrm{Cl}$	-6.8	-8.4		$\mathrm{O}+\mathrm{H}_{2} \rightarrow \mathrm{OH}+\mathrm{H}$	-0.6	2.8	1.8
$\mathrm{BO}+\mathrm{HCl} \rightarrow \mathrm{HOBCl}$	-38.5	-36.0		$\mathrm{F}+\mathrm{H}_{2} \rightarrow \mathrm{HF}+\mathrm{H}$	-31.9	-31.7	-32.0
$\mathrm{BO}+\mathrm{HCl} \rightarrow \mathrm{HB}(\mathrm{O}) \mathrm{Cl}$	-34.0	-29.6		$\mathrm{F}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}+\mathrm{HF}$	-18.1	-18.1	-17.0
$\mathrm{BO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HBO}+\mathrm{OH}$	6.6	6.5					

[^1]G. $\mathbf{B}_{2} \mathbf{O}_{4}$. Archibong and St-Amant have recently reviewed earlier experimental and theoretical studies relating to the $\mathrm{Al}_{2} \mathrm{O}_{4}$ system ${ }^{32}$ and have computationally characterized several stationary points on its singlet and triplet potential energy surfaces. They found the most stable to correspond to a triplet with $D_{2 h}$ symmetry. We have accordingly investigated the analogous structure for $\mathrm{B}_{2} \mathrm{O}_{4}$ and found that it does give an energy minimum. The optimized geometry is shown in Figure 1. Our computed heat of formation for this compound in the gas phase is $-186.1 \mathrm{kcal} / \mathrm{mol}$ (Table 3) so that the oxidation of boron to $\mathrm{B}_{2} \mathrm{O}_{4}$ would release 9.3 kcal per gram of boron, compared to 10 kcal when producing gaseous $\mathrm{B}_{2} \mathrm{O}_{3}$.

Summary

(1) Optimized B3PW91/6-311+G(2df,2pd) and CBS-Q geometries are presented for 34 boron-containing molecules, for most of which these experimental data are not available. Two structures that were investigated (HBOF and HBOCl) do not correspond to energy minima.
(2) Energy minima at 0 K and enthalpies and free energies at 298 K have been computed by both procedures for 66 atoms
and molecules relevant to the oxygen/fluorine oxidation of boron. These permit the evaluation of ΔH (298 K), ΔG (298 K), and the equlibrium constants for several hundred possible ignition and combustion reactions.
(3) The enthalpies at 298 K were used to find heats of formation for 58 atoms and molecules, for many of which they are not known experimentally. Four instances are noted in which the experimental values are unreliable or suspect.
(4) It is shown, for a representative group of seven reactions, that $\Delta H(298 \mathrm{~K})$ and $\Delta H(2000 \mathrm{~K})$ differ, on the average, by only $1.5 \mathrm{kcal} / \mathrm{mol}$. On the other hand, ΔG can change considerably between these temperatures. Its value at a higher temperature can be estimated using ΔH (298 K).
(5) Among the five sets of isomers included in this study, the most similar in stability are the pair $\mathrm{HOBCl} / \mathrm{HB}(\mathrm{O}) \mathrm{Cl}$; the greatest difference is between HBO and HOB, with the latter being much less stable.
(6) Calculated heats of reaction are presented for 83 processes that are known or possible steps in the ignition and/or combustion of boron. The two most exothermic are $\mathrm{BO}+\mathrm{F} \rightarrow \mathrm{FBO}$ and $\mathrm{BO}+\mathrm{O} \rightarrow \mathrm{BO}_{2}$.
(7) It has been shown that a triplet $\mathrm{B}_{2} \mathrm{O}_{4}$ structure with $D_{2 h}$ symmetry corresponds to an energy minimum and is thus another possible oxidation product of boron.
(8) Both of the computational procedures used in this work achieved good levels of accuracy. Comparisons with experimental data indicate that the B3PW91 is better for geometries while the CBS-Q is more reliable for heats of formation and heats of reaction, for which the average absolute deviations are, respectively, $1.7 \mathrm{kcal} / \mathrm{mol}$ (omitting BF_{2} and $\mathrm{H}_{3} \mathrm{~B}_{3} \mathrm{O}_{3}$) and 2.5 kcal/mol.

Acknowledgment. We greatly appreciate the financial support provided by the Ballistic Missile Defense Organization and the Office of Naval Research through contract N00014-95-1-1339, Program Officers Dr. Leonard H. Caveny (BMDO) and Dr. Judah Goldwasser (ONR).

References and Notes

(1) JANAF Thermochemical Tables, 2nd ed.; NSRDR-NBS 37; U.S. Government Printing Office: Washington DC, 1971.
(2) Burdette, C. W.; Lander, H. R.; McCoy, J. R. J. Energy 1978, 2, 289.
(3) Turns, S. R.; Holl, J. T.; Solomon, A. S. P.; Faeth, G. M. Combust. Sci. Technol. 1985, 43, 287.
(4) Yetter, R. A.; Cho, S. Y.; Rabitz, H.; Dryer, F. L.; Brown, R. C.; Kolb, C. E. In 22nd Symp. (Int.) Combust.; The Combustion Institute: 1988; p 919.
(5) Yetter, R. A.; Rabitz, H.; Dryer, F. L.; Brown, R. C.; Kolb, C. E. Combust. Flame 1991, 83, 43.
(6) Brown, R. C.; Kolb, C. E.; Rabitz, H.; Cho, S. Y.; Yetter, R. A.; Dryer, F. L. Int. J. Chem. Kinet. 1991, 23, 957.
(7) Pasternack, L. Combust. Flame 1992, 90, 259.
(8) Brown, R. C.; Kolb, C. E.; Cho, S. Y.; Yetter, R. A.; Dryer, F. L.; Rabitz, H. Int. J. Chem. Kinet. 1994, 26, 319.
(9) Yeh, C. L.; Kuo, K. K. Prog. Energy Combust. Sci. 1996, 22, 511.
(10) Brown, R. C.; Kolb, C. E.; Yetter, R. A.; Dryer, F. L.; Rabitz, H. Combust. Flame 1995, 101, 221.
(11) Yetter, R. A.; Dryer, F. L.; Rabitz, H.; Brown, R. C.; Kolb, C. E. Combust. Flame 1998, 112, 387.
(12) Zhou, W.; Yetter, R. A.; Dryer, F. L.; Rabitz, H.; Brown, R. C.; Kolb, C. E. Combust. Flame 1998, 112, 507.
(13) Belyung, D. P.; Dalakos, G. T.; Rocha, J.-D. R.; Fontijn, A. In 27th Symp. (Int.) Combust.; The Combustion Institute: submitted.
(14) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(15) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
(16) Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A., Jr. J. Chem. Phys. 1996, 104, 2598.
(17) Politzer, P.; Lane, P. J. Mol. Struct. (THEOCHEM) 1998, 454, 229.
(18) Jursic, B. S. J. Mol. Struct. (THEOCHEM) 1998, 429, 161.
(19) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrezewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; HeadGordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94; Gaussian, Inc.: Pittsburgh, PA, 1995.
(20) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17 (Suppl. 1).
(21) Harmony, M. D.; Laurie, V. W.; Kuczkowski, R. L.; Schwendeman, R. H.; Ramsay, D. A.; Lovas, F. J.; Lafferty, W. J.; Maki, A. G. J. Phys. Chem. Ref. Data 1979, 8, 619.
(22) Kawaguchi, K.; Endo, Y.; Hirota, E. J. Mol. Spectrosc. 1982, 93, 381.
(23) Kawashima, Y.; Kawaguchi, K.; Endo, Y.; Hirota, E. J. Chem. Phys. 1987, 87, 2006.
(24) Kawashima, Y.; Endo, Y.; Hirota, E. J. Mol. Spectrosc. 1989, 133, 116.
(25) Handbook of Chemistry and Physics, 78th ed.; Lide, D. R., Ed.; CRC Press: New York, 1997.
(26) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley-Interscience: New York, 1986.
(27) Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Gaussian, Inc: Pittsburgh, 1996.
(28) Feller, D.; Dixon, D. A.; Peterson, K. A. J. Phys. Chem. A 1998, 102, 7053.
(29) Glasstone, S. Thermodynamics for Chemists; D. Van Nostrand: Princeton, NJ, 1947.
(30) Soto, M. R. J. Phys. Chem. 1995, 99, 6540.
(31) Soto, M. R. In Decomposition, Combustion, and Detonation Chemistry of Energetic Materials; Brill, T. B., Russell, T. P., Tao, W. C., Wardle, R. B., Eds.; Materials Research Society: Pittsburgh, 1996; p 181.
(32) Archibong, E. F.; St-Amant, A. J. Phys. Chem. A 1998, 102, 6877.

[^0]: ${ }^{a}$ The triplet three-membered ring isomer of $\mathrm{B}_{2} \mathrm{O}$ is not included. ${ }^{b}$ Three-membered ring.

[^1]: ${ }^{a}$ All reactants and products are in the gaseous phase except where otherwise indicated. For reactions involving $\mathrm{B}(\mathrm{g})$, calculated results were obtained using experimental heat of formation of $\mathrm{B}(\mathrm{g}) .{ }^{b}$ Reference 20. Experimental values for $\mathrm{BH}_{2}, \mathrm{BF}_{2}$, and BCl_{2} were not used, due to uncertain accuracy (see text).

